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Abstract

Linear functions on spacings—instead of linear functions on order statistics—are considered, in order to
simplify the form of best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) for
the scale parameter in the classical location-scale family. Also, a su3cient condition for the non-negativity
of the scale estimator is presented and, moreover, necessary and su3cient conditions for the BLUE (and the
BLIE) to be a constant multiple of the sample range are derived. Finally, a modi5cation of this approach
is applied in order to simplify the derivations of both the location and the scale estimators in the Uniform
Type-II Censored model. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this article we are mainly concerned with the estimation of the scale parameter �2 in the
classical location-scale family

{F((· − �1)=�2); �1 ∈R; �2¿ 0};
where F(·) is a known d.f. with positive 5nite variance (thus, F is non-degenerate). In particu-
lar, consider the random sample X ∗

1 ; X
∗
2 ; : : : ; X

∗
n from F((· − �1)=�2) and the corresponding ordered
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sample X ∗
1 : n6X ∗

2 : n;6 · · ·6X ∗
n : n, and also let X1; X2; : : : ; Xn and X1 : n6X2 : n;6 · · ·6Xn : n be the

corresponding samples from the completely known d.f. F(·). Then, since
(X ∗

1 : n; X
∗
2 : n; : : : ; X

∗
n : n)

′ d=(�1 + �2X1 : n; �1 + �2X2 : n; : : : ; �1 + �2Xn : n)′;

it follows that any linear estimator L (i.e., a linear function on order statistics) has the form

L=
n∑
i=1

c∗i X
∗
i : n

d=�1
n∑
i=1

c∗i + �2
n∑
i=1

c∗i Xi : n;

for some constants c∗i ; i = 1; 2; : : : ; n. Therefore, a necessary and su3cient condition for L to be
invariant (i.e., independently distributed of the location parameter �1) is

n∑
i=1

c∗i = 0:

Observe that if this is the case, then there exist constants ci; i = 1; : : : ; n− 1, such that

L=
n−1∑
i=1

ciZ∗
i

d=�2
n−1∑
i=1

ciZi; (1.1)

where Z∗
i = X ∗

i+1 : n − X ∗
i : n

d=�2(Xi+1 : n − Xi : n) = �2Zi, i = 1; : : : ; n − 1 are, respectively, the spacings
from F((· − �1)=�2) and the completely known F(·) (this is an immediate consequence of the fact
that

(Z∗
1 ; : : : ; Z

∗
n−1)

′ d=�2(Z1; : : : ; Zn−1)′;

which enable us to express L as a linear function on Zi’s, as in (1.1)).
Now, let X=(X1 : n; X2 : n; : : : ; Xn : n)′ and Z=(Z1; : : : ; Zn−1)′ be the random vectors of order statistics

and spacings, respectively, from the known d.f. F(·), and use the notation

� = E[X ]; �=D[X ] and S = E[XX ′]; (1.2)

while the corresponding quantities for Z are denoted by

m = E[Z ]; D =D[Z ] and E = E[ZZ ′]; (1.3)

where D[	] denotes the dispersion matrix of the random vector 	 (note that the vectors and matrices
in (1.2) are of order n, while the corresponding ones in (1.3) are of order n− 1). Of course,

�= S − ��′; �¿ 0; S¿ 0;

and, similarly

D = E −mm′; D¿ 0; E¿ 0:

In the present paper we present an eHective technique for the derivation of the best linear unbiased
estimator (BLUE) and the best linear invariant estimator (BLIE) of �2, based on simple properties
satis5ed by the spacings (Propositions 2.1 and 2.2). This approach, i.e., the use of spacings instead
of order statistics, turns out to be much more convenient for theoretical and applied purposes; e.g., it
enables us to give an explicit form for the constant a=BLIE=BLUE (Lemma 2.1), to 5nd necessary
and su3cient conditions for the BLUE of �2 to be a constant multiple of the sample range (Theorem
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3.1) and, furthermore, to present a su3cient condition for the non-negativity of the scale estimator
(Theorem 4.1), that seems to be accurate enough for many cases.

Finally, we discuss a similar approach for the Uniform Type-II Censored model, yielding easily
some known results of Sarhan and Greenberg (1959), concerning both the location parameter �1 and
the scale parameter �2 (Section 5 and examples of Section 6).

2. BLUEs and BLIEs

Using the notation given in the introduction, it is well-known (Lloyd (1952); see also Arnold
et al. (1992), Chapter 7) that the BLUE of �2 is given by

LU =
1′�−1(1�′ − �1′)�−1X∗

(1′�−11)(�′�−1�)− (1′�−1�)2
; (2.1)

where X∗ = (X ∗
1 : n; X

∗
2 : n; : : : ; X

∗
n : n)

′ and 1′ = (1; 1; : : : ; 1)∈Rn; the variance of LU (which is the MSE
of LU since, by construction, it is unbiased for �2) is given by

Var[LU] =
(1′�−11)�22

(1′�−11)(�′�−1�)− (1′�−1�)2
: (2.2)

In the case where F(·) is symmetric, we take �1 throughout to be the mean. Then formulae (2.1)
and (2.2) are simpli5ed to the following one:

LU =
�′�−1X∗

�′�−1�
with Var[LU] =

�22
�′�−1�

: (2.3)

Both expressions (2.1) and (2.2) for a general F(·) can be simpli5ed to an expression similar to
(2.3), if we use spacings instead of order statistics. In particular, we have the following

Proposition 2.1. Under the above assumptions and the notation of Section 1; the BLUE of �2 and
its variance are given by

LU =
m′D−1Z∗

m′D−1m
with Var[LU] =

�22
m′D−1m

; (2.4)

where Z∗ = (Z∗
1 ; : : : ; Z

∗
n−1)

′.

Proof. Since the form of the most general linear location-invariant estimator of �2 is L = c′Z∗;
where c = (c1; : : : ; cn−1)′ (see (1.1)); it follows that it is unbiased for �2 iH

c′m = 1; (2.5)

on the other hand; its variance is given by

Var[L] = (c′Dc)�22: (2.6)

Thus; we wish to minimize (2.6) under restriction (2.5). Taking into account the Lagrangian Q(c; �)=
c′Dc − 2�(c′m); it is easily seen that the optimum value is c = �(D−1m); and the restriction yields
�= 1=(m′D−1m); this completes the proof.
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Observing that (2.1) and (2.4) are two diHerent forms of the same estimator LU, and equating
variances, it follows that

m′D−1m = �′�−1� − (1′�−1�)2

1′�−11
6 �′�−1�;

with equality iH 1′�−1� = 0 (this happens for symmetric F(·)). This identity holds for all d.f.’s
with 5nite strictly positive variance, showing a non-obvious connection between the mean-vectors
and the dispersion matrices of Z and X . On the other hand, the calculations involved in (2.4) are
much simpler than those involved in (2.1).

Giving up the requirement of unbiasedness, Mann (1969) obtained the form of BLIE (i.e., of the
Best Linear Invariant Estimator) to be

LI =
(
�′ − 1′S−1�

1′S−11
1′
)
S−1X∗; (2.7)

while the corresponding MSE is

MSE[LI] = E[LI − �2]2 =
(
1 +

(1′S−1�)2

(1′S−11)
− �′S−1�

)
�22: (2.8)

In the case of a symmetric population, 1′S−1� = 0 and (2.7), (2.8) reduce to

LI = �′S−1X∗ with MSE[LI] = (1− �′S−1�)�22: (2.9)

However, using spacings instead of order statistics, one can easily derive a very simple expression
for the BLIE of �2 (without imposing symmetry on the population). In fact, the following proposition
can be easily established.

Proposition 2.2. Under the above assumptions and the notation of Section 1; the BLIE of �2 and
its MSE are given by

LI =m′E−1Z∗ with MSE[LI] = (1−m′E−1m)�22: (2.10)

The proof follows by the same arguments as in Proposition 2.1, except that we do not have to
use restriction (2.5). Since the estimators in (2.7) and (2.10) coincide, it follows that

m′E−1m = �′S−1� − (1′S−1�)2

1′S−11
6 �′S−1�:

The above equation gives a connection between the mean vectors and mean-squared matrices of
Z and X , satis5ed by any d.f. F with 5nite, strictly positive variance. Moreover, the equality is
attained for any symmetric F , and in this case we have

m′E−1m = �′S−1�6 1:

Also note that the form of (2.10) (holding for any F) is quite similar to that of (2.9) (which merely
holds for symmetric F), showing once again the simpli5cations one attains using spacings instead
of order statistics.
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Since the BLIE has minimum MSE among all the linear invariant functions on spacings, while
the BLUE has minimum MSE among all the linear invariant functions on spacings that are unbiased
for �2, it follows that MSE[LI]6MSE[LU] = Var[LU], showing that (see (2.4) and (2.10))

1−m′E−1m6
1

m′D−1m
; (2.11)

this yields a similar inequality for order statistics when the population is symmetric, namely,

1− �′S−1�6
1

�′�−1�
:

However, the equality never holds in (2.11); this happens because of the following:

Lemma 2.1. There exists a constant a = a(F); 0¡a¡ 1; depending only on F(·) (i:e:; a is inde-
pendent of �1 and �2); such that

LI = a LU: (2.12)

This constant is given by

a=m′E−1m =
m′D−1m

1 +m′D−1m
: (2.13)

Proof. First note that E = D + mm′ (see Section 1). This; by Theorem 8.9.3 in Graybill (1969);
implies that

E−1 =D−1 − 1
1 +m′D−1m

(D−1m)(D−1m)′

and; thus;

m′E−1m =m′D−1m − (m′D−1m)2

1 +m′D−1m
;

proving the second equality in (2.13). Consider now the class of estimators of the form L� = � LU;
�∈R. It is easy to see that they are linear invariant estimators and; moreover; that

MSE[L�] = E[�LU − �2]2 =
(

�2

m′D−1m
+ (1− �)2

)
�22:

Therefore; minimizing the last expression with respect to �; we get

�=
m′D−1m

1 +m′D−1m
= a∈ (0; 1):

For this value of �= a; it follows that

MSE[La] = �22=(1 +m
′D−1m) = (1−m′E−1m)�22 = MSE[LI]

(for the second equality we used the second equality in (2.13); and the third equality is included
in (2.10)); this shows that La has the same MSE as LI; and since La is linear and location invariant;
it follows by the uniqueness of LI that LI = La with probability 1. This proves both (2.12) and
(2.13).

It should be noted that the assertion that LI is a constant multiple of LU is implicitly included in
Mann’s (1969) results; however, it seems that the form of (2.13) is new.
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3. When is the BLUE (or BLIE) of �2 a multiple of the sample range?

Bondesson (1976) proved that the BLUE of �1 is the sample mean (for all sample sizes n¿ 2)
iH F is a Normal or shifted Gamma (or negative Gamma) distribution. In this section, we 5nd
necessary and su3cient conditions under which the BLUE (or, equivalently, the BLIE) of �2 is a
constant multiple of the sample range

R∗ = Z∗
1 + · · ·+ Z∗

n−1 = X ∗
n : n − X ∗

1 : n:

In particular, we shall prove the following:

Theorem 3.1. The BLUE (or the BLIE) of �2 is a multiple of the sample range R∗ i< any one of
the following equivalent conditions hold:
(i) There exists a constant �1 such that

m = �1(E1):

(ii) There exists a constant �1 such that

E[Zi] = �1E[ZiR]; i = 1; : : : ; n− 1;

where R=Z1+ · · ·+Zn−1=Xn : n−X1 : n is the sample range of the random sample X1; X2; : : : ; Xn
from the known d.f. F(·).

(iii) There exists a constant �2 such that

m = �2(D1):

(iv) There exists a constant �2 such that

E[Zi] = �2 Cov[Zi; R]; i = 1; : : : ; n− 1;

where R is as in (ii).
When (i)–(iv) hold; the BLUE of �2 is given by

LU =
1

�1(1′E1)
(X ∗

n : n − X ∗
1 : n) =

1
�2(1′D1)

(X ∗
n : n − X ∗

1 : n)

and the BLIE of �2 by

LI = �1(X ∗
n : n − X ∗

1 : n) =
�2

1 + �22(1
′D1)

(X ∗
n : n − X ∗

1 : n):

Proof. First observe that (i) is equivalent to (ii); and (iii) is equivalent to (iv). If (ii) holds; then

E[Zi](1− �1E[R]) = �1 Cov[Zi; R]; i = 1; : : : ; n− 1;

which can be rewritten as

E[Zi] = �2 Cov[Zi; R]; i = 1; : : : ; n− 1;

where �2 = �1=(1− �1E[R]); and thus (iv) holds (observe that �1 = E[R]=E[R2]; since

E[R] =
n−1∑
i=1

E[Zi] =
n−1∑
i=1

�1E[ZiR] = �1E[R2]
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and hence; 0¡�1E[R]¡ 1). Conversely; if (iv) holds; then

E[R] =
n−1∑
i=1

E[Zi] = �2
n−1∑
i=1

Cov[Zi; R] = �2Var[R];

showing that �2 = E[R]=Var[R]∈ (0;+∞); and

E[Zi] + �2E[Zi]E[R] = �2E[ZiR]; i = 1; : : : ; n− 1;

the last expression can be rewritten as

E[Zi] = �1E[ZiR]; i = 1; : : : ; n− 1;

with �1 = �2=(1 + �2E[R]); which is (ii). Therefore; all conditions (i)–(iv) are equivalent.
Assume now that (i) holds. Then, from (2.10), the BLIE of �2 is

LI =m′E−1Z∗ = �1(1′Z∗) = �1(X ∗
n : n − X ∗

1 : n);

and the other formulae follow from (2.13) and (2.4). In order to prove necessity, assume that
L� = �R∗ = �(1′Z∗) is the BLIE of �2. Then E[�R∗ − �2]2 = (�2(1′E1) + 1 − 2�(1′m))�22 must be
minimum with respect to �, showing that

�=
1′m
1′E1

:

Since for this value of � we must have

E[�R∗ − �2]2 =
(
1− (1′m)2

1′E1

)
�22 = MSE[LI] = (1−m′E−1m)�22;

we conclude that

(1′m)2 = (1′E1)(m′E−1m):

This is the Cauchy–Schwarz inequality written as an equality and, therefore, this equality is attained
only if there exists a constant �1 such that m = �1(E1), completing the proof.

4. Are the scale estimators always non-negative?

Arnold et al. (1992, p. 174), observed that the existence and uniqueness of the BLUE for �2 do
not guarantee that it is always non-negative. Regarding this question, a particular positive answer
(in a more general setting) was given by Bai et al. (1997). Speci5cally, they proved that if F has
a log-concave density f, then the BLUE of �2 is positive with probability 1. Our results using
spacings, however, enable us to provide a simpler and stronger positive answer to many situations.
In this direction, 5rst observe that since Z∗¿ 0 componentwise, where 0 = (0; : : : ; 0)′ ∈Rn−1, the
assertion that the BLUE (equivalently, the BLIE) of �2 is non-negative is equivalent to the fact
that D−1m¿ 0 componentwise or, equivalently, E−1m¿ 0 componentwise; this follows from (2.4),
(2.10) and Lemma 2.1, since m = E[Z ]¿ 0 componentwise. Therefore, it is easy to prove the
following result.
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Table 1

z2 0 1 3 4
z1

0 2199=3375 39=3375 3=3375 39=3375
1 507=3375 0 0 0
3 3=3375 78=3375 0 0
4 507=3375 0 0 0

Theorem 4.1. If either n= 2 or the known d.f. F(·) is such that

Cov[Zi; Zj]6 0 (4.1)

for all i �= j; i; j = 1; : : : ; n− 1; then the BLUE (and the BLIE) of �2 is non-negative.

Proof. If n = 2; then by Theorem 3.1 the BLUE of �2 is a multiple of the sample range and the
result is obvious. Under (4.1); the positive de5nite matrix D has non-positive oH-diagonal elements.
Therefore; from Lemma 2.2 in Bai et al. (1997) (cf. Theorem 12.2.9 in Graybill (1969)) it follows
that the positive de5nite matrix D−1 has all its elements non-negative; this shows that D−1m¿ 0
componentwise; and the assertion follows from expression (2.4).

It should be noted that the conclusion of Theorem 4.1 is stronger (in the particular setting of the
present article) than the main result of Bai et al. (1997), because of their important by-product:

A log-concave density has negatively correlated spacings:

Note also that most of the distributions that are commonly used in the location-scale families
satisfy (4.1); this is not always the case, however, as the following example shows (see also the
Pareto d.f. discussed in Section 4 of Bai et al., 1997).

Example 4.1. Let n=3 and consider the d.f. F(·) assigning probabilities 1
15 ;

1
15 and 13

15 to the values
0; 3 and 4; respectively. It follows that the joint probability mass function P[Z1 = z1; Z2 = z2] of
(Z1; Z2)′ is given by Table 1. From this we get E[Z1]=926=1125, E[Z2]=94=1125, E[Z1Z2]=26=375,
E[Z2

1 ] = 3116=1125 and E[Z2
2 ] = 256=1125, and thus

Cov[Z1; Z2] =
706

(1125)2
¿ 0:

Nevertheless, the necessary and su3cient condition for LU to be non-negative, i.e., E−1m¿ 0 com-
ponentwise, can be rewritten (for n= 3) as

E[Z1Z2]
E[Z2

1 ]
6
E[Z2]
E[Z1]

6
E[Z2

2 ]
E[Z1Z2]

;

which is also satis5ed in this case.
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5. Linear estimation for the uniform censored model

Let us assume that U ∗
1 : n6U ∗

2 : n6 · · ·6U ∗
s : n (26 s6 n) is a Type-II right censored sample

from Uniform (�1; �1 + �2) distribution. Then, since

(U ∗
1 : n; U

∗
2 : n; : : : ; U

∗
s : n)

′ d=(�1 + �2U1 : n; �1 + �2U2 : n; : : : ; �1 + �2Us : n)′;

where U1 : n6U2 : n6 · · ·6Us : n is a Type-II right censored ordered sample from the standard Uni-
form (0; 1) d.f., it is convenient to consider the random variables

Vi = qi−1Ui : n − qiUi−1 : n; i = 1; 2; : : : ; n;

where U0 : n ≡ 0 and pi =1− qi = i=(n+1), i=0; 1; : : : ; n. Since E[Ui : n] =pi and Cov[Ui : n; Uj : n] =
piqj=(n+2), it follows that E[Vi]=1=(n+1)=p1, Var[Vi]=qi−1qi=((n+1)(n+2)) and Cov[Vi; Vj]=0
for all i �= j; i; j = 1; 2; : : : ; n; therefore, the Vi’s are uncorrelated random variables. As in (1.1), it
can be easily seen that a general linear estimator based on the censored sample has the form

L=
s∑

i=1

c∗i U
∗
i : n

d= �1
s∑

i=1

c∗i + �2
s∑

i=1

c∗i Ui : n = �1
s∑

i=1

c∗i + �2
s∑

i=1

ciVi; (5.1)

where the constants ci and c∗i ; i=1; 2; : : : ; s, are related through c∗s =csqs−1 and c∗i =ciqi−1−ci+1qi+1,
i = 1; : : : ; s− 1. Therefore,

E[L] = �1
s∑

i=1

c∗i +
�2

n+ 1

s∑
i=1

ci;

and thus, L is unbiased for �2 iH
s∑

i=1

c∗i = 0 and
s∑

i=1

ci = n+ 1;

that is,

c1 =−n+ 1
n

and
s∑

i=2

ci =
(n+ 1)2

n
: (5.2)

Using the above notations, we can easily prove the following Theorem. Note that this result is
due to Sarhan and Greenberg (1959), but the point here is that for the calculation of BLUE and its
variance we do not have to invert a submatrix of �.

Theorem 5.1. The BLUE of �2 and its variance are given by

LU =
n+ 1
s− 1

(U ∗
s : n − U ∗

1 : n); with Var[LU] =
(n+ 2− s)�22
(n+ 2)(s− 1)

:

Proof. Since the Vi’s are uncorrelated random variables; it follows from (5.1) and (5.2) that

Var[L] =
�22

(n+ 1)(n+ 2)

s∑
i=1

c2i qi−1qi: (5.3)
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Therefore; minimizing (5.3) with respect to (5.2) by considering the Lagrangian

Q(c2; : : : ; cs; �) =
s∑

i=2

c2i qi−1qi − 2�

(
s∑

i=2

ci − (n+ 1)2

n

)
;

we get

ci =
�

qi−1qi
; i = 2; : : : ; s;

and from (5.2); the Lagrangian multiplier � simpli5es to

�=
(n+ 1)2

n

(
s∑

i=2

1
qi−1qi

)−1

=
n− s+ 1
s− 1

:

Therefore;

ci =
n− s+ 1

(s− 1)qi−1qi
=

(n− s+ 1)(n+ 1)2

(s− 1)(n+ 2− i)(n+ 1− i)
; i = 2; : : : ; s;

and thus; c∗1 =−(n+ 1)=(s− 1); c∗s = (n+ 1)=(s− 1) and c∗i = 0 for 2¡i¡s; this; combined with
(5.3); completes the proof.

By exploiting the above technique (using Vi’s), the BLUE of �1 (and its variance) can be easily
derived as

TU =
1

s− 1
(sU ∗

1 : n − U ∗
s : n) with Var[TU] =

s�22
(n+ 1)(n+ 2)(s− 1)

:

Moreover, one can easily prove that the above estimators are also trace-e?cient, determinant-
e?cient and, the stronger, variance–covariance matrix-e?cient linear unbiased estimators (i.e.,
D[(T; L)′]¿D[(TU; LU)′] for any linear unbiased estimator (T; L) of (�1; �2), in the sense that the
matrix D[(T; L)′]−D[(TU; LU)′] is non-negative de5nite); the derivations follow the same arguments
as the corresponding ones in Balakrishnan and Rao (1997) for the exponential distribution.

6. Examples and conclusions

Example 6.1 (Full Sample from the Uniform (�1; �1 + �2) model). In this case;

m =
1

n+ 1
1; D =

1
(n+ 1)2(n+ 2)

((n+ 1)I − J);

where I is the (n − 1)-dimensional identity matrix and J = 11′ is the (n − 1)-dimensional matrix
with all its elements equal to 1. Therefore;

D−1 = 1
2 (n+ 1)(n+ 2)(2I + J);

and from Propositions 2.1 and 2.2 we get the BLUE and the BLIE to be; respectively;

LU =
m′D−1Z∗

m′D−1m
=
n+ 1
n− 1

(U ∗
n : n − U ∗

1 : n); LI =
m′D−1Z∗

1 +m′D−1m
=
n+ 2
n

(U ∗
n : n − U ∗

1 : n):



N. Balakrishnan, N. Papadatos / Statistics & Probability Letters 57 (2002) 193–204 203

Observe that

D1=
2

(n+ 1)2(n+ 2)
1=

2
(n+ 1)(n+ 2)

m;

and Theorem 3.1(iii) (with �2 = (n + 1)(n + 2)=2) immediately yields that the BLUE (BLIE) is a
multiple of the sample range.

Example 6.2 (Right Censored Sample from the Uniform (0; �2) model). Proceeding as in Sec-
tion 5; we 5nd the BLUE of �2 and its variance to be

LU =
n+ 1
s

U ∗
s : n with Var[LU] =

(n+ 1− s)�22
(n+ 2)s

:

Example 6.3 (Right Censored Sample from the Uniform (�1; �1 + 1) model). Similarly; we 5nd
the BLUE of �1 and its variance to be

TU =
1

s− 1
(sU ∗

1 : n − U ∗
s : n) with Var[TU] =

s
(n+ 1)(n+ 2)(s− 1)

:

Example 6.4 (Right Censored Sample from the Uniform (−�2; �2) model). In this case; we 5nd
the BLUE of �2 and its variance to be

LU =
n+ 1

n2 − n− 2− ns+ 3s
(U ∗

s : n − (n+ 1− s)U ∗
1 : n)

with

Var[LU] =
4(n+ 1− s)�22

(n+ 2)(n2 − n− 2− ns+ 3s)
:

Example 6.5 (Bernoulli (p) location-scale family with p∈ (0; 1) known). Assume that X ∗
1 ; X

∗
2 ; : : : ;

X ∗
n is a random sample from the two valued d.f. assuming probabilities 1−p and p (p known) to

the unknown reals �1 and �1 + �2; respectively; where �2¿ 0. In this trivial example; we have

P[Z1 = · · ·= Zn−1 = 0] = P[all the Xi’s are equal] = pn + (1− p)n;

where X1; X2; : : : ; Xn is a random sample from Bernoulli (p) and Zi = Xi+1 : n − Xi : n; i= 1; : : : ; n− 1;
are the corresponding spacings. Observe that Zi = Z2

i and ZiZj = 0 for all i �= j; i; j = 1; : : : ; n − 1.
Therefore;

E[ZiR] =
n−1∑
j=1

E[ZiZj] = E[Z2
i ] = E[Zi]; i = 1; : : : ; n− 1;

and from Theorem 3.1(ii) (with �1 = 1) we conclude that the BLUE and the BLIE for �2 are;
respectively;

LU =
1

1− pn − (1− p)n
(X ∗

n : n − X ∗
1 : n) and LI = X ∗

n : n − X ∗
1 : n:
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Observe that in this trivial case; LI is always better than LU; since

|LI − �2|6 |LU − �2|;
and the equality holds iH X ∗

1 : n = X ∗
n : n; an event of probability pn + (1− p)n → 0; as n → ∞. This

example shows that there are distributions other than the Uniform; such that the BLUE is a constant
multiple of the sample range and; therefore; the Uniform is not characterized by this property.

Since the derivations of the above examples are extremely simple, it seems that the method
presented in Section 5 is quite eHective. Furthermore, it should be noted that the results of Sections 3
and 4 do fairly depend on the representation of the linear location-invariant estimator as a linear
function on spacings, indicating the applicability of the presented method. Moreover, as a 5nal
observation, we note that the results of Section 2 can be easily applied to any Type-II Censored
sample of the form

X ∗
i1 : n6X ∗

i2 : n6 · · ·6X ∗
is : n; 16 i1¡ · · ·¡is6 n (26 s6 n);

by considering the corresponding spacings

Z̃
∗
= (Z̃

∗
1 ; : : : ; Z̃

∗
s−1)

′ = (X ∗
i2 : n − X ∗

i1 : n; : : : ; X
∗
is : n − X ∗

is−1 : n)
′;

and using formulae (2.4) and (2.10) with Z̃
∗
, m̃ = E[Z̃ ], D̃ = D[Z̃ ] and Ẽ = E[Z̃Z̃ ′

] in place of
Z∗, m, D and E, respectively, where

Z̃ = (Z̃1; : : : ; Z̃ s−1)′ = (Xi2 : n − Xi1 : n; : : : ; Xis : n − Xis−1 : n)
′:

Therefore, if either s = 2 or (4.1) holds, then the conclusion of Theorem 4.1 (that the BLUE of
�2 is non-negative) remains valid in the general Type-II censored case; for s = 2 the BLUE of �2
is a multiple of Z̃

∗
1 = X ∗

i2 : n − X ∗
i1 : n = Z∗

i1 + · · · + Z∗
i2−1, while if s¿ 2 and (4.1) holds then m̃¿ 0

componentwise, and for k ¡m (16 k ¡m6 s− 1) we simply have

Cov[Z̃k ; Z̃m] =
ik+1−1∑
r=ik

im+1−1∑
t=im

Cov[Zr; Zt]6 0:

References

Arnold, B.C., Balakrishnan, N., Nagaraja, H.N., 1992. A First Course in Order Statistics. Wiley, New York.
Bai, Z., Sarkar, S.K., Wang, W., 1997. Positivity of the best unbiased L-estimator of the scale parameter with complete

or selected order statistics from location-scale distribution. Statist. Probab. Lett. 32, 181–188.
Balakrishnan, N., Rao, C.R., 1997. A note on the best linear unbiased estimator based on order statistics. Amer. Statist.

51, 181–185.
Bondesson, L., 1976. When is the sample mean BLUE? Scand. J. Statist. 3, 116–120.
Graybill, F.A., 1969. Introduction to Matrices with Applications in Statistics. Wadsworth, Belmont, CA.
Lloyd, E.H., 1952. Least-squares estimation of location and scale parameters using order statistics. Biometrika 39, 88–95.
Mann, N.R., 1969. Optimum estimators for linear functions of location and scale parameters. Ann. Math. Statist. 40,

2149–2155.
Sarhan, A.E., Greenberg, B.G., 1959. Estimation of location and scale parameters for the rectangular population from

censored samples. J. Roy. Statist. Soc. Ser. B 21, 356–363.


	The use of spacings in the estimation of a scale parameter
	Introduction
	BLUEs and BLIEs
	When is the BLUE (or BLIE) of theta2 a multiple of the sample range?
	Are the scale estimators always non-negative?
	Linear estimation for the uniform censored model
	Examples and conclusions
	References


